Fill Ups of Circle

Q.1. If A and B are points in the plane such that PA/PB = k (constant) for all P on a given circle, then the value of k cannot be equal to (1982 - 2 Marks) Ans. 1

Sol. As P lies on a circle and A and B two points in the plane

such that $\frac{PA}{PB} = k$

Then k can be any real number except 1 as otherwise P will lie on perpendicular bisector of AB which is a line.

Q.2. The points of intersection of the line 4x - 3y - 10 = 0 and the circle $x^2 + y^2 - 2x + 4y - 20 = 0$ are and (1983 - 2 Marks)

Ans. (4, 2), (-2, -6)

Sol. For point of intersection of line $4x - 3y - 10 = 0 \dots (1)$

and circle $x^2 + y^2 - 2x + 4y - 20 = 0 \dots (2)$

Solving (1) and (2), we get

 $\left(\frac{3y+10}{4}\right)^2 + y^2 - 2\left(\frac{3y+10}{4}\right) + 4y - 20 = 0$ $\Rightarrow y^2 + 4y - 12 = 0 \Rightarrow y = 2, -6$ $\Rightarrow x = 4, -2$ $\therefore \text{ Points are } (4, 2) \text{ and } (-2, -6)$

Ans. 3/4

Sol. Let 3x - 4y + 4 = 0 be the tangent at point A and 6x - 8y - 7 = 0 be the tangent of point B of the circle.

As the two tangents parallel to each other

- \therefore AB should be the diameter of circle.
- \therefore AB = distance between parallel lines
- 3x 4y + 4 = 0 and
- 6x 8y 7 = 0 = distance between
- 6x 8y + 8 = 0 and 6x 8y 7 = 0

$$= \left| \frac{8+7}{\sqrt{36+64}} \right| = \frac{15}{10} = \frac{3}{2}$$

 \therefore radius of circle = $\frac{1}{2}(AB) = \frac{3}{4}$

Q.4. Let $x^2 + y^2 - 4x - 2y - 11 = 0$ be a circle. A pair of tangents from the point (4, 5) with a pair of radii form a quadrilateral of area (1985 - 2 Marks)

Ans. 8 sq. units

Sol. KEY CONCEPT :

Length of tangent from a point (x_1, y_1) to a circle $x^2 + y^2 + 2gx + 2fy + c = 0$ is given by

$$\sqrt{x_1^2 + y_1^2 + 2gx_1 + 2fy_1 + c}$$

The equation of circle is, $x^2 + y^2 - 4x - 2y - 11 = 0$ It's centre is (2, 1), radius = $\sqrt{4+1+11} = 4 = BC$

length of tangent from the pt. (4, 5) is

$$=\sqrt{16+25-16-10-11} = \sqrt{4} = 2 = AB$$

∴ Area of quad. ABCD
= 2 (Area of
$$\triangle$$
ABC) = 2× $\frac{1}{2}$ ×AB×BC
= 2× $\frac{1}{2}$ ×2×4 = 8 sq. units.

Q.5. From the origin chords are drawn to the circle $(x - 1)^2 + y^2 = 1$. The equation of the locus of the mid-points of these chords is (1985 - 2 Marks)

Ans. $x^2 + y^2 - x = 0$

Sol. The equation of given circle is $(x - 1)^2 + y^2 = 1$ or $x^2 + y^2 - 2x = 0$... (1)

KEY CONCEPT : We know that equation of chord of curve S = 0, whose mid point is (x_1, y_1) is given by $T = S_1$ where T is tangent to curve S = 0 at (x_1, y_1) .

: If (x_1, y_1) is the mid point of chord of given circle (1), then equation of chord is

$$xx_1 + yy_1 - (x + x_1) = x_1^2 + y_1^2 - 2x_1$$

$$\Rightarrow (x_1 - 1)x + y_1y + x_1 - x_1^2 - y_1^2 = 0$$

At it passes through origin, we get

$$x_1 - x_1^2 - y_1^2 = 0$$
 or $x_1^2 + y_1^2 - x_1 = 0$
∴ locus of (x_1, y_1) is $x^2 + y^2 - x = 0$

Q.6. The equation of the line passing through the points of intersection of the circles $3x^2 + 3y^2 - 2x + 12y - 9 = 0$ and $x^2 + y^2 + 6x + 2y - 15 = 0$ is (1986 - 2 Marks)

Ans. 10x - 3y - 18 = 0

Sol. The equation of two circles are

$$x^{2} + y^{2} - \frac{2}{3}x + 4y - 3 = 0 \dots (1)$$

and $x^{2} + y^{2} + 6x + 2y - 15 = 0 \dots (2)$

Now we know eq. of common chord of two circles

$$S_1 = 0 \text{ and } S_2 = 0 \text{ is } S_1 - S_2 = 0$$

$$\Rightarrow 6x + \frac{2}{3}x + 2y - 4y - 15 + 3 = 0$$

$$\Rightarrow \frac{20x}{3} - 2y - 12 = 0 \Rightarrow 10x - 3y - 18 = 0$$

Q.7. From the point A(0, 3) on the circle $x^2 + 4x + (y - 3)^2 = 0$, a chord AB is drawn and extended to a point M such that AM = 2AB. The equation of the locus of M is (1986 - 2 Marks)

Ans.

Sol. The equation of circle is, $x^2 + y^2 + 4x - 6y + 9 = 0 ... (1)$

AM = 2AB

$$\Rightarrow AB = BM$$

Let the co-ordinates of M be (h, k) Then B is mid pt of AM

$$\therefore \quad B\left(\frac{0+h}{2},\frac{3+k}{2}\right) = \left(\frac{h}{2},\frac{k+3}{2}\right)$$

As B lies on circle (1),

$$\therefore \quad \left(\frac{h}{2}\right)^{2} + \left(\frac{k+3}{2}\right)^{2} + 4 \times \frac{h}{2} - 6\left(\frac{k+3}{2}\right) + 9 = 0$$

$$\Rightarrow h^{2} + k^{2} + 8h - 6k + 9 = 0$$

$$\therefore \text{ locus of (h, k) is, } x^{2} + y^{2} + 8x - 6y + 9 = 0$$

Q.8. The area of the triangle formed by the tangents from the point (4, 3) to the the circle $x^2 + y^2 = 9$ and the line joining their points of contact is (1987 - 2 Marks)

Ans. 192/25

Sol. From P (4, 3) two tangents PT and PT' are drawn to the circle $x^2 + y^2 = 9$ with O (0, 0) as centre and r = 3.

To find the area of $\Delta PTT'$.

Let R be the point of intersection of OP and TT'.

Then we can prove by simple geometry that OP is perpendicular bisector of TT'.

Equation of chord of contact TT' is 4x + 3y = 9 Now, OR = length of the perpendicular from O to TT' is

 $= \left| \frac{4 \times 0 + 3 \times 0 - 9}{\sqrt{4^2 + +3^2}} \right| = \frac{9}{5}$ OT = radius of circle = 3 $\therefore \quad TR = \sqrt{OT^2 - OR^2} = \sqrt{9 - \frac{81}{25}} = \frac{12}{5}$ Again OP = $\sqrt{(4 - 0)^2 + (3 - 0)^2} = 5$ $\therefore PR = OP - OR = 5 - \frac{9}{5} = \frac{16}{5}$ Area of the triangle

$$PTT' = PR \ge TR = \frac{16}{5} \times \frac{12}{5} = \frac{192}{25}$$

Ans.

Sol. We have $C_1 : x^2 + y^2 = 16$, Centre $O_1(0, 0)$ radius = 4. C_2 is another circle with radius 5, let its centre O_2 be (h, k).

Now the common chord of circles C_1 and C_2 is of maximum length when chord is diameter of smaller circle C_1 , and then it passes through centre O_1 of circle C_1 . Given that slope of this chord is 3/4.

: Equation of AB is,

$$y = \frac{3}{4}x \Longrightarrow 3x - 4y = 0 \dots (1)$$

In right ΔAO_1O_2 ,

$$O_1 O_2 = \sqrt{5^2 - 4^2} = 3$$

Also $O_1O_2 = \perp^{\ell ar}$ distance from (h, k) to (1)

$$\Rightarrow 3 = \left| \frac{3h - 4k}{\sqrt{3^2 + 4^2}} \right| \Rightarrow \pm 3 = \frac{3h - 4k}{5}$$
$$\Rightarrow 3h - 4k \pm 15 = 0 \dots (2)$$
$$AB \perp O_1 O_2 \Rightarrow m_{AB} \times m_{O_1 O_2} = -1$$
$$\Rightarrow \frac{3}{4} \times \frac{k}{h} = -1 \Rightarrow 4h + 3k = 0 \dots (3)$$

Solving, 3h - 4k + 15 = 0 and 4h + 3k = 0

We get
$$h = -9/5$$
, $k = 12/5$

Again solving 3h - 4k - 15 = 0 and 4h + 3k = 0

We get h = 9/5, k = -12/5

Thus the required centre is $\left(\frac{-9}{5}, \frac{12}{5}\right)$ or $\left(\frac{9}{5}, \frac{-12}{5}\right)$

Q.10. The area of the triangle formed by the positive x-axis and the normal and the tangent to the circle $x^2 + y^2 = 4$ at $(1,\sqrt{3})$ is, (1989 - 2 Marks)

Ans.

Sol. Tangent at P (1, $\sqrt{3}$) to the circle $x^2 + y^2 = 4$ is x . 1 + y . $\sqrt{3} = 4$

It meets x-axis at A (4, 0),

- \therefore OA = 4 Also OP = radius of circle = 2 $\therefore PA = \sqrt{4^2 2^2} = \sqrt{12}$
- : Area of $\triangle OPA = \frac{1}{2} \times OP \times PA = \frac{1}{2} \times 2 \times \sqrt{12}$

Q.11. If a circle passes through the points of intersection of the coordinate axes with the lines $\lambda x - y + 1 = 0$ and x - 2y + 3 = 0, then the value of $\lambda = \dots (1991 - 2 \text{ Marks})$

Q.11. If a circle passes through the points of intersection of the coordinate axes with the lines $\lambda x - y + 1 = 0$ and x - 2y + 3 = 0, then the value of $\lambda = \dots (1991 - 2 \text{ Marks})$

Ans. 2

 $^{=2\}sqrt{3}$ sq. units

Sol. The given lines are |x - y + 1| = 0 and x - 2y + 3 = 0 which meet x-axis at $A\left(-\frac{1}{\lambda}, 0\right)$ and B (-3, 0)And

y-axis at C (0, 1) and D $\left(0, \frac{3}{2}\right)$ respectively..

Then we must have, $OA \times OB = OC \times OD$

Q.12. The equation of the locus of the mid-points of the circle $4x^2 + 4y^2 - 12x + 4y + 1 = 0$ that subtend an angle of $2\pi/3$ at its centre is (1993 - 2 Marks)

Ans. $16x^2 + 16y^2 - 48x + 16y + 31 = 0$

Sol. The given circle is, $4x^2 + 4y^2 - 12x + 4y + 1 = 0$

or
$$x^2 + y^2 - 3x + y + \frac{1}{4} = 0$$
 with centre $\left(\frac{3}{2}, -\frac{1}{2}\right)$

and $r = \sqrt{\frac{9}{4} + \frac{1}{4} - \frac{1}{4}} = \frac{3}{2}$

Let M (h, k) be the mid pt. of the chord AB of the given circle, then CM \perp AB. \angle ACB = 120°.

In ΔACM,

Q.13. The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. Equation of the circle with AB as a diameter is (1996 - 1 Mark)

Ans.
$$x^2 + y^2 - x - y = 0$$

Sol. Equation of any circle passin g through the point of intersection of $x^2 + y^2 - 2x = 0$ and y

$$= x \text{ is } x^{2} + y^{2} - 2x + 1 (y - x) = 0$$

or
$$x^{2} + y^{2} - (2 + 1)x + 1y = 0$$

Its centre is
$$\left(\frac{2+\lambda}{2}, \frac{-\lambda}{2}\right)$$

For AB to be the diameter of the required circle, the centre must lie on AB. That is,

CLICK HERE

🕀 www.studentbro.in

$$\frac{2+\lambda}{2} = -\frac{\lambda}{2} \Rightarrow \lambda = -1$$

Thus, equation of required circle is $x^2 + y^2 - 2x - y + x = 0$ or $x^2 + y^2 - x - y = 0$

Q.14. For each natural number k, let C_k denote the circle with radius k centimetres and centre at the origin. On the circle C_k , a-particle moves k centimetres in the counter-clockwise direction. After completing its motion on C_k , the particle moves to C_{k+1} in the radial direction. The motion of the particle continues in this manner. The particle starts at (1, 0). If the particle crosses the positive direction of the x-axis for the first time on the

circle C_nthen n = (1997 - 2 Marks)

Ans. 7

The radius of circle C_1 is 1 cm, C_2 is 2 cm and soon.

It starts from A_1 (1, 0) on C_1 , moves a distance of 1 cm on C_1 to come to B_1 . The angle subtended by A_1B_1 at the centre

will be $\frac{1}{r} = \theta$ radians, i.e. 1 radian.

From B1 it moves along radius, OB_1 and comes to A_2 on circle C_2 of radius 2. From A_2 it moves on C_2 a distance 2 cm and comes to B_2 . The angle subtended by A_2B_2 is again as before 1 radian. The total angle subtended at the centre is 2 radians. The process continues. In order to cross the x-axis again it must describe 2p radians

i.e
$$2 \cdot \frac{22}{7} = 6.7$$
 radians.

Hence it must be moving on circle C7

 \therefore n = 7

Q.15. The chords of contact of the pair of tangents drawn from each point on the line 2x+y = 4 to circle x2+y2 = 1 pass through the point (1997 - 2 Marks)

Ans.

Sol. Let (h, k) be any point on the given line

 \therefore 2h + k = 4 and chord of contact is hx + ky = 1 or hx + (4 - 2h) y = 1

or (4y - 1) + h(x - 2y) = 0

P + 1 Q = 0.It passes through the intersection of P = 0 and

$$Q = 0$$
 i.e. $\left(\frac{1}{2}, \frac{1}{4}\right)$.

True False of Circle

Q.1. No tangent can be drawn from the point (5/2, 1) to the circumcircle of the triangle with vertices $(1, \sqrt{3})(1, -\sqrt{3}), (3, -\sqrt{3})(1985 - 1 \text{ Mark})$

Ans. T

Sol. The circle passes through the points $A(1,\sqrt{3}), B(1,-\sqrt{3})$ and $C(3,-\sqrt{3})$ Here line AB is parallel to y-axis and BC is parallel to x-axis, there $\angle ABC = 90^{\circ}$

 \therefore AC is a diameter of circle.

: Eq. of circle is

$$(x-1)(x-3) + (y-\sqrt{3})(y+\sqrt{3}) = 0$$

 $\Rightarrow x2 + y2 - 4x = 0 \dots (1)$

Let us check the position of pt (5/2, 1) with. respect to the circle (1), we get $S_l = \frac{25}{4} + 1 - 10 < 0$

∴ Point lies inside the circle.

 \therefore No tangent can be drawn to the given circle from point (5/2, 1).

 \therefore Given statement is true.

Q.2. The line x + 3y = 0 is a diameter of the circle $x^2 + y^2 - 6x + 2y = 0$. (1989 - 1 Mark)

Ans. T

Sol. The centre of the circle $x^2 + y^2 - 6x + 2y = 0$ is (3, -1) which lies on the line x + 3y = 0

 \therefore The statement is true.

Subjective questions of Circle

Q.1. Find the equation of the circle whose radius is 5 and which touches the circle $x^2 + y^2 - 2x - 4y - 20 = 0$ at the point (5, 5). (1978)

Ans. $x^2 + y^2 - 18x - 16y + 120 = 0$

Sol. The given circle is

 $x^2 + y^2 - 2x - 4y - 20 = 0$ whose centre is (1, 2) and radius = 5 Radius of required circle is also 5.

Let its centre be $C_2(\alpha, \beta)$. Both the circles touch each other at P (5, 5).

It is clear from figure that P (5, 5) is the mid-point of C_1C_2 .

Therefore, we should have

$$\frac{1+\alpha}{2} = 5$$
 and $\frac{2+\beta}{2} = 5 \Rightarrow \alpha = 9$ and $\beta = 8$

∴ Centre of requir ed cir cle is (9, 8) and equation of required circle is $(x - 9)^2 + (y - 8)^2 = 5^2$ $\Rightarrow x^2 + y^2 - 18x - 16y + 120 = 0$

Q.2. Let A be the centre of the circle $x^2 + y^2 - 2x - 4y - 20 = 0$.

Suppose that the tangents at the points B(1, 7) and D(4, -2) on the circle meet at the point C. Find the area of the quadrilateral ABCD. (1981 - 4 Marks)

Ans. 75 sq. units

Sol. The eq. of circle is

 $x^2 + y^2 - 2x - 4y - 20 = 0$

Centre (1, 2), radius = $\sqrt{1+4+20} = 5$

Using eq. of tangent at (x_1, y_1) of

 $x^{2} + y^{2} + 2gx_{1} + 2fy_{1} + c = 0$ is

$$xx_1 + yy_1 + g(x + x_1) f(y + y_1) + c = 0$$

Eq. of tangent at (1, 7) is x . 1 + y . 7 - (x + 1) - 2(y + 7) - 20 = 0

 \Rightarrow y - 7 = 0 ... (1) Similarly eq. of tangent at (4, -2) is

- 4x 2y (x + 4) 2(y 2) 20 = 0
- $\Rightarrow 3x 4y 20 = 0 \dots (2)$

For pt C, solving (1) and (2),

we get x = 16, y = 7 \therefore C (16, 7).

Now, clearly ar (quad ABCD) = 2 Ar (rt \triangle ABC)

$$= 2 \times \frac{1}{2} \times AB \times BC = AB \times BC$$

where AB = radius of circle = 5 and BC = length of tangent from C to circle

$$=\sqrt{16^2+7^2-32-28-20}=\sqrt{225}=15$$

 \therefore ar (quad ABCD) = 5 × 15 = 75 sq. units.

Q.3. Find the equations of the circle passing through (-4, 3) and touching the lines x + y = 2 and x - y = 2. (1982 - 3 Marks)

As centre lies on \angle bisector of given equations (lines) which are the lines y = 0 and x = 2.

: Centre lies on x axis or x = 2.

But as it passes through (-4, 3), i.e., II quadrant.

: Centre must lie on x-axis Let it be (a, 0) then distance between (a, 0) and (-4, 3) is = length of \perp^{lar} distance from (a, 0) to x + y - 2 = 0

$$\Rightarrow (a + 4)^{2} + (0 - 3)^{2} = \left(\frac{a - 2}{\sqrt{2}}\right)^{2}$$

$$\Rightarrow a^{2} + 20a + 46 = 0 \Rightarrow a = -10 \pm \sqrt{54}$$

$$\therefore \text{ Equation of circle is}$$

$$\Rightarrow [x + (10 \pm \sqrt{54})]^{2} + y^{2} = [-(10 \pm \sqrt{54}) + 4]^{2} + 3^{2}$$

$$\Rightarrow x^{2} + y^{2} + 2(10 \pm \sqrt{54})x + 8(10 \pm \sqrt{54}) - 25 = 0$$

$$\Rightarrow x^2 + y^2 + 2(10 \pm \sqrt{54})x + 55 \pm \sqrt{54} = 0.$$

Q.4. Through a fixed point (h, k) secants are drawn to the circle $x^2 + y^2 = r^2$. Show that the locus of the mid-points of the secants intercepted by the circle is $x^2 + y^2 = hx + ky$. (1983 - 5 Marks)

Ans. Sol. Equation of chord whose mid point is given is

 $T=S_1 \\$

[Consider (x_1, y_1) be mid pt. of AB]

$$\Rightarrow xx_1 + yy_1 - r^2 = x_1^2 + y_1^2 - r^2$$

As it passes through (h, k),

$$: hx_1 + ky_1 = x_1^2 + y_1^2$$

: locus of (x_1, y_1) is, $x^2 + y^2 = hx + ky$

Q.5. The abscissa of the two points A and B are the roots of the equation $x^2 + 2ax - b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2px - q^2 = 0$. Find the equation and the radius of the circle with AB as diameter. (1984 - 4 Marks)

Ans.

Sol. Let the two points be $A = (\alpha_1, \beta_1)$ and $B = (\alpha_2, \beta_2)$

Thus α_1 , α_2 are roots of $x^2 + 2\alpha x - b^2 = 0$

$$\therefore \ \alpha_1 + \alpha_2 = -2\alpha \dots (1)$$

 $\alpha_1 \alpha_2 = -\beta_2 \dots (2)$

 β_1 , β_2 are roots of $x^2 + 2px - q^2 = 0$

$$\therefore \ \beta_1 + \beta_2 = -2p \dots (3)$$

$$\beta_1\beta_2=-q2\ldots (4)$$

Now equation of circle with AB as diameter is $(x - \alpha_1) (x - \alpha_2) + (y - \beta_1) (y - \beta_2) = 0$

$$\Rightarrow x^{2} - (\alpha_{1} + \alpha_{2})x + \alpha_{1}\alpha_{2} + y^{2} - (\beta_{1} + \beta_{2})y + \beta_{1}\beta_{2} = 0$$

$$\Rightarrow x^{2} + 2\alpha x - \beta_{2} + y^{2} + 2py - q^{2} = 0 \text{ [Using eq. (1), (2), (3) and}$$

Get More Learning Materials Here : 🗾

(4)]

$$\Rightarrow x^2 + y^2 + 2\alpha x + 2py - b^2 - q^2 = 0$$

Which is the equation of required circle, with its centre (-a, -p) and radius $\sqrt{a^2 + p^2 + b^2 + q^2}$

Q.6. Lines 5x + 12y - 10 = 0 and 5x - 12y - 40 = 0 touch a circle C₁ of diameter 6. If the centre of C₁ lies in the first quadrant, find the equation of the circle C₂ which is concentric with C₁ and cuts intercepts of length 8 on these lines. (1986 - 5 Marks)

Ans. Sol. Let equation of tangent PAB be 5x + 12y - 10 = 0 and that of

PXY be 5x - 12y - 40 = 0

Now let centre of circles C_1 and C_2 be C (h, k).

Let CM \perp PAB then CM = radius of C₁ = 3

Also C₂ makes an intercept of length 8 units on PAB \Rightarrow AM = 4

Then in Δ AMC, we get

 $AC = \sqrt{4^2 + 3^2} = 5$

 \therefore Radius of C₂ is = 5 units

Also, as $5x + 12y - 10 = 0 \dots (1)$

are tangents to C_1 , length of perpendicular from C to AB = 3 units

 $\therefore \quad \text{We get } \frac{5h+12k-10}{13} = \pm 3$ $\Rightarrow 5h + 12k - 49 = 0 \dots (i)$ or5h + 12k + 29 = 0 \ldots (ii)
Similarly, $\frac{5h-12k-40}{13} = \pm 3$ $\Rightarrow 5h - 12k - 79 = 0 \dots (iii)$ or5h - 12k - 1 = 0 \ldots (iv)
As C lies in first quadrant $\therefore h, k \text{ are } + ve$ $\therefore \text{ Eq. (ii) is not possible.}$

Solving (i) and (iii), we get h = 64/5, k = -5/4

This is also not possible.

Now solving (i) and (iv), we get h = 5, k = 2.

Thus centre for C_2 is (5, 2) and radius 5.

Hence, equation of C₂ is $(x - 5)^2 + (y - 2)^2 = 5^2$

 $\Rightarrow x^2 + y^2 - 10x - 4y + 4 = 0$

Q.7. Let a given line L_1 intersects the x and y axes at P and Q, respectively. Let another line L_2 , perpendicular to L1, cut the x and y axes at R and S, respectively. Show that the locus of the point of intersection of the lines PS and QR is a circle passing through the origin. (1987 - 3 Marks)

Ans.

Sol. Let the equation of L_1 be $x \cos \alpha + y \sin \alpha = p_1$

Then any line perpendicular to L_1 is x sin a $-y \cos \alpha = p_2$, where p_2 is a variable.

Then L_1 meets x-axis at P ($p_1 \sec \alpha, 0$) and y-axis at Q ($0, p_1 \csc \alpha$).

Similarly L₂ meets x-axis at R ($p_2 \csc \alpha$, 0) and y-axis at S (0, $-p_2 \sec \alpha$).

Now equation of PS is,

 $\frac{x}{p_1 \sec \alpha} + \frac{y}{-p_2 \sec \alpha} = 1 \implies \frac{x}{p_1} - \frac{y}{p_2} = \sec \alpha \dots (1)$

Similarly, equation of QR is,

$$\Rightarrow \frac{x}{p_2 \operatorname{cosec} \alpha} + \frac{y}{p_1 \operatorname{cosec} \alpha} = 1$$
$$\Rightarrow \frac{x}{p_2} + \frac{y}{p_1} = \operatorname{cosec} \alpha \dots (2)$$

Locus of point of intersection of PS and QR can be obtained by eliminating the variable p_2 from (1) and (2)

i.e.
$$\left(\frac{x}{p_1} - \sec \alpha\right) \frac{x}{y} + \frac{y}{p_1} = \csc \alpha$$

[Substituting the value of $\frac{1}{p_2}$ from (1) in (2)] $\Rightarrow (x - p_1 \sec \alpha) x + y^2 = p_1 y \csc \alpha$ $\Rightarrow x^2 + y^2 - p_1 x \sec \alpha - p_1 y \csc \alpha = 0$

which is a circle through origin.

Q.8. The circle $x^2 + y^2 - 4x - 4y + 4 = 0$ is inscribed in a triangle which has two of its sides along the co-ordinate axes. The locus of the circumcentre of the triangle is $x + y - xy + k(x^2 + y^2)^{1/2} = 0$. Find k. (1987 - 4 Marks)

Ans. Sol. The given circle is $x^2 + y^2 - 4x - 4y + 4 = 0$.

This can be re-written as $(x - 2)^2 + (y - 2)^2 = 4$

which has centre C (2, 2) and radius 2.

Let the eq. of third side AB of $\triangle OAB$ is $\frac{x}{a} + \frac{y}{b} = 1$ such that

A (a, o) and B (o, b)

Length of perpendicular form (2, 2) on AB = radius = CM = 2

$$\therefore \quad \frac{\left|\frac{2}{a} + \frac{2}{b} - 1\right|}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = 2$$

Since (2, 2) and origin lie on same side of AB

$$\therefore \quad \frac{-\left(\frac{2}{a} + \frac{2}{b} - 1\right)}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} = 2$$
$$\Rightarrow \quad \frac{2}{a} + \frac{2}{b} - 1 = -2\sqrt{\frac{1}{a^2} + \frac{1}{b^2}} \dots (1)$$

Since $\angle AOB = \pi/2$.

Hence, AB is the diameter of the circle passing through $\triangle OAB$, mid point of AB is the centre of the circle i.e. (a/2, b/2)

Let centre be $(h, k) = \left(\frac{a}{2}, \frac{b}{2}\right)$

then a = 2h, b = 2k.

Substituting the values of a and b in (1), we get

$$\frac{2}{2h} + \frac{2}{2k} - 1 = -2\sqrt{\frac{1}{4h^2} + \frac{1}{4k^2}}$$
$$\Rightarrow \quad \frac{1}{h} + \frac{1}{k} - 1 = -\sqrt{\frac{1}{h^2} + \frac{1}{k^2}} \Rightarrow h + k - hk + \sqrt{h^2 + k^2} = 0$$

∴ Locus of M (h, k) is,

$$x + y - xy + \sqrt{x^2 + y^2} = 0 \dots (2)$$

Comparing it with given equation of locus of circumcentre of Δ i.e.

$$x + y - xy + k\sqrt{x^2 + y^2} = 0...(3)$$

We get, k = 1

Q. 9. If $\binom{m_i, \frac{1}{m_i}}{m_i}, m_i > 0$, i = 1, 2, 3, 4 are four distinct points on a circle, then show that $m_1m_2m_3m_4 = 1$ (1989 - 2 Marks)

Ans. Sol. Given that $\left(m_i, \frac{1}{m_i}\right), m_i > 0$, i = 1, 2, 3, 4 are four distinct points on a circle. Let the equation of circle be $x^2 + y^2 + 2gx + 2fy + c = 0$

As the point $\left(m, \frac{1}{m}\right)$ lies on it, therefore, we have

$$m^{2} + \frac{1}{m^{2}} + 2gm + \frac{2f}{m} + c = 0$$

 $\Rightarrow m^{4} + 2gm^{3} + cm^{2} + 2fm + 1 = 0$

$$\Rightarrow III^{+} + 2gIII^{-} + CIII^{-} + 2IIII + I = 0$$

Since m_1 , m_2 , m_3 , m_4 are roots of this equation, therefore product of roots = 1

 \Rightarrow m₁m₂m₃m₄ = 1

Q.10. A circle touches the line y = x at a point P such that $OP = 4\sqrt{2}$, where O is the origin. The circle contains the point (-10, 2) in its interior and the length of its chord on the line x + y = 0 is $6\sqrt{2}$. Determine the equation of the circle. (1990 - 5 Marks)

Ans. $x^2 + y^2 + 18x - 2y + 32 = 0$

Sol. Let AB be the length of ch ord intercepted by circle on y + x = 0

Let CM be perpendicular to AB from centre C (h, k).

Also y - x = 0 and y + x = 0 are perpendicular to each other.

: OPCM is rectangle.

$$\therefore CM = OP = 4\sqrt{2}$$

Let r be the radius of cirlce.

Also
$$AM = \frac{1}{2}AB = \frac{1}{2} \times 6\sqrt{2} = 3\sqrt{2}$$

 \therefore In \triangle CAM, AC² = AM² + MC²
 $\Rightarrow r^2 = (3\sqrt{2})^2 + (4\sqrt{2})^2 \Rightarrow r^2 = (5\sqrt{2})^2$
 $\Rightarrow r = 5\sqrt{2}$
Again y = x is tangent to the circle at P
 \therefore CP = r

$$\Rightarrow \left|\frac{h-k}{\sqrt{2}}\right| = 5\sqrt{2} \Rightarrow h-k=\pm 10 \quad (1)$$

Also CM =
$$4\sqrt{2}$$

 $\Rightarrow \left|\frac{h+k}{\sqrt{2}}\right| = 4\sqrt{2} \Rightarrow h+k=\pm 8 \dots (2)$

Solving four sets of eq's given by (1) and (2), we get the possible centres as (9, -1), (1, -9), (-1, 9), (-9, 1)

: Possible circles are $(x - 9)^2 + (y + 1)^2 - 50$

```
= 0 (x - 1)^{2} + (y + 9)^{2} - 50= 0 (x + 1)^{2} + (y - 9)^{2} - 50= 0 (x + 9)^{2} + (y - 1)^{2} - 50 = 0
```

But the pt (-10, 2) lies inside the circle.

$$\therefore$$
 S₁ < 0

which is satisfied only for $(x + 9)^2 + (y - 1)^2 - 50 = 0$

: The required eq. of circle is $x^2 + y^2 + 18x - 2y + 32 = 0$

Q.11. Two circles, each of radius 5 units, touch each other at (1, 2). If the equation of their common tangent is 4x + 3y = 10, find the equation of the circles. (1991 - 4 Marks)

Ans. Sol. Let t be the common tangent given by $4x + 3y = 10 \dots (1)$

Common pt of contact being P(1, 2)

Let A and B be the centres of the circles, required.

Clearly, AB is the line perpendicular to t and passing through P(1, 2).

Therefore eq. of AB is

$$\frac{x-1}{4/5} = \frac{x-2}{3/5} = r \begin{bmatrix} \text{As slope of } t \text{ is } = -4/3 \\ \therefore \text{ slope of } AB \text{ is } = 3/4 = \tan \theta \\ \therefore \cos \theta = 4/5; \sin \theta = 3/5 \end{bmatrix}$$

For pt A, r = -5 and for pt B, r = 5, we get

$$\frac{x-1}{4/5} = \frac{y-2}{3/5} = -5,5 \left(\begin{array}{c} \text{radius of each circle} \\ \text{being 5}, AP = PB = 5 \end{array} \right)$$

$$\Rightarrow \text{ For pt A x = -4 + 1, y = -3 + 2}$$

and For pt B x = 4 + 1, y = 3 + 2

$$\therefore A (-3, -1) B (5, 5).$$

$$\therefore \text{ Eq.'s of required circles are } (x + 3)^2 + (y + 1)^2 = 5^2$$

and $(x - 5)^2 + (y - 5)^2 = 5^2$

$$\Rightarrow x^2 + y^2 + 6x + 2y - 15 = 0 \\ and x^2 + y^2 - 10x - 10y + 25 = 0 \right\}$$

Q.12. Let a circle be given by 2x(x - a) + y(2y - b) = 0, $(a \neq 0, b \neq 0)$. Find the condition on a and b if two chords, each bisected by the x- axis, can be

drawn to the circle from $\left(a, \frac{b}{2}\right)$ (1992 - 6 Marks)

Ans. Sol. The given circle is 2x (x - a) + y (2y - b) = 0 (a, $b \neq 0$)

$$\Rightarrow 2x^2 + 2y^2 - 2ax - by = 0 \dots (1)$$

Let us consider the chord of this circle which passes through

the pt $\left(a, \frac{b}{2}\right)$ and whose mid pt. lies on x-axis.

Let (h, 0) be the mid point of the chord, then eq. of chord can be obtained by $T = S_1$

i.e.,
$$2xh + 2y.0 - a(x + h) - \frac{b}{2}(y + 0) = 2h^2 - 2ah$$

 $\Rightarrow (2h - a)x - \frac{b}{2}y + ah - 2h^2 = 0$

This chord passes through $\left(a, \frac{b}{2}\right)$ therefore

$$(2h-a)a - \frac{b}{2} \cdot \frac{b}{2} + ah - 2h^2 = 0$$
$$\Rightarrow 8h^2 - 12ah + (4a^2 + b^2) = 0$$

As given in question, two such chords are there, so we should have two real and distinct values of h from the above quadratic in h, for which

$$D > 0$$

$$\Rightarrow (12a)^2 - 4 \times 8 \times (4 a^2 + b^2) > 0$$

$$\Rightarrow a^2 > 2b^2$$

Q.13. Consider a family of circles passing through two fixed points A (3,7) and B (6, 5). Show that the chords in which the circle $x^2 + y^2 - 4x - 6y - 3 = 0$ cuts the members of the family are concurrent at a point. Find the coordinate of this point. (1993 - 5 Marks)

Sol. Let the family of circles, passing through A (3, 7) and B (6, 5), be

$$x^2 + y^2 + 2gx + 2fy + c = 0$$

As it passes through (3, 7)

$$\therefore$$
 9 + 49 + 6g + 14f + c = 0 or, 6g + 14f + c + 58 = 0 ... (1)

As it passes through (6, 5)

$$:: 36 + 25 + 12g + 10f + c = 0$$

$$12g + 10f + c + 61 = 0 \dots (2)$$

(2) - (1) gives,

$$6g - 4f + 3 = 0 \implies g = \frac{4f - 3}{6}$$

Substituting the value of g in equation (1),

we get 4f - 3 + 14f + c + 58 = 0

$$\Rightarrow 18f + 55 + c = 0 \Rightarrow c = -18f - 55$$

Thus the family is

$$x^{2}+y^{2}+\left(\frac{4f-3}{3}\right)x + 2fy - (18f + 55) = 0$$

Members of this family are cut by the circle $x^2 + y^2 - 4x - 6y - 3 = 0$

: Equation of family of chords of intersection of above two circles is $S_1 - S_2 = 0$

$$\Rightarrow \left(\frac{4f-3}{3}+4\right)x + (2f+6)y - 18f + 52) = 0$$

which can be written as

$$(3x+6y-52)+f\left(\frac{4}{3}x+2y-18\right)=0$$

which represents the family of lines passing through the pt. of intersection of the lines

3x + 6y - 52 = 0 and 4x + 6y - 54 = 0

Solving which we get x = 2 and y = 23/3.

Thus the required pt. of intersection is $\left(2, \frac{23}{3}\right)$

Q.14. Find the coordinates of the point at which the circles $x^2 + y^2 - 4x - 2y = -4$ and $x^2 + y^2 - 12x - 8y = -36$ touch each other. Also find equations common tangents touching the circles in the distinct points. (1993 - 5 Marks)

Ans. Sol. The given circles are

 $x^{2} + y^{2} - 4x - 2y = -4 \text{ and}$ $x^{2} + y^{2} - 12x - 8y = -36$ i.e., $x^{2} + y^{2} - 4x - 2y + 4 = 0 \dots (1)$ $x^{2} + y^{2} - 12x - 8y + 36 = 0 \dots (2)$

with centres $C_1(2, 1)$ and $C_2(6, 4)$ and radii 1 and 4 respectively.

Also $C_1C_2 = 5$ As $r_1 + r_2 = C_1C_2$

 \Rightarrow Two circles touch each other externally, at P.

Clearly, P divides C_1C_2 in the ratio 1 : 4

 \therefore Co-ordinates of P are

 $\left(\frac{1\times 6+4\times 2}{1+4},\frac{1\times 4+4\times 1}{4+1}\right)=\left(\frac{14}{5},\frac{8}{5}\right)$

Let AB and CD be two common tangents of given circles, meeting each other at T. Then T divides C_1C_2 externally in the ratio 1 : 4.

KEY CONCEPT : [As the direct common tangents of two circles pass through a pt. which divides the line segment joining the centres of two circles externally in the ratio of their radii.]

Hence,
$$T \equiv \left(\frac{1 \times 6 - 4 \times 2}{1 - 4}, \frac{1 \times 4 - 4 \times 1}{1 - 4}\right) = \left(\frac{2}{3}, 0\right)$$

Let m be the slope of the tangent, then equation of tangent through (2/3, 0) is

$$y-0=m\left(x-\frac{2}{3}\right) \Rightarrow y-mx+\frac{2}{3}m=0$$

Now, length of perpendicular from (2, 1), to the above tangent is radius of the circle

$$\therefore \quad \left| \frac{1 - 2m + \frac{2}{3}m}{\sqrt{m^2 + 1}} \right| = 1$$

$$\Rightarrow (3 - 4m)^2 = 9(m^2 + 1) \Rightarrow 9 - 24m + 16m^2 = 9m^2 + 9$$

$$\Rightarrow 7m^2 - 24m = 0 \Rightarrow m = 0, \frac{24}{7}$$

Thus the equations of the tangents are y = 0 and 7y - 24x + 16 = 0.

Q.15. Find the intervals of values of a for which the line y + x = 0 bisects two chords drawn from a

point $\left(\frac{1+\sqrt{2}a}{2}, \frac{1-\sqrt{2}a}{2}\right)$ to the circle $2x^2 + 2y^2 - (1+\sqrt{2}a)x - (1-\sqrt{2}a)y = 0$. (1996 - 5 Marks)

Sol. Let the given point be

$$(p,\overline{p}) = \left(\frac{1+\sqrt{2}a}{2}, \frac{1-\sqrt{2}a}{2}\right)$$
 and the equation of the circle

becomes $x^2 + y^2 - px - \overline{p}y = 0$

Since the chord is bisected by the line x + y = 0, its mid-point can be chosen as (k, -k). Hence the equation of the chord by $T = S_1$ is

🕀 www.studentbro.in

$$kx - ky - \frac{p}{2}(x + k) - \frac{\overline{p}}{2}(y - k) = k^2 + k^2 - pk + \overline{p}k$$

It passes through $A(p, \bar{p})$

- $\therefore \quad kp k\,\overline{p} \frac{p}{2}(p+k) \frac{\overline{p}}{2}(\overline{p}-k) = 2k^2 pk + \overline{p}\,k$
- or $3k(p-\bar{p})=4k^2+(p^2+\bar{p}^2)...(1)$

Put
$$p - \bar{p} = a\sqrt{2}, p^2 - \bar{p}^2 = 2, \frac{(1+2a^2)}{4} = \frac{1+2a^2}{2} \dots (2)$$

Hence, from (1) by the help of (2), we get

$$4k^2 - 3\sqrt{2}ak + \frac{1}{2}(1 + 2a^2) = 0 \dots (3)$$

Since, there are two chords which are bisected by x + y = 0, we must have two real values of k from (3)

∴
$$\Delta > 0$$

or $18a^2 - 8(1 + 2a^2) > 0$
or, $a^2 - 4 > 0$
or, $(a + 2)(a - 2) > 0$
∴ $a < -2$ or > 2
∴ $a \in (-\infty, -2) \cup (2, \infty)$
or $a \in] - \infty, -2[\cup] 2, \infty [$

Q.16. A circle passes through three points A, B and C with the line segment AC as its diameter. A line passing through A intersects the chord BC at a point D inside the circle. If angles DAB and CAB are α and β respectively and the distance between the point A and the mid point of the line segment DC is d, prove that the area of the circle is

 $\frac{\pi d^2 \cos^2 \alpha}{\cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \cos (\beta - \alpha)}$

(1996 - 5 Marks)

CLICK HERE

Sol. Let r be the radius of circle, then AC = 2r Since, AC is the diameter

 \therefore In \triangle ABC BC = 2r sin β , AB = 2r cos β

In rt \angle ed \triangle ABC BD = AB tan α = 2r cos β tan α

 $AD = AB \sec \alpha = 2r \cos \beta \sec \alpha$

 \therefore DC = BC - BD = 2r sin β - 2r cos β tan α

Now since E is the mid point of DC

 $\therefore DE = \frac{DC}{2} = \frac{2r\sin\beta - 2r\cos\beta\tan\alpha}{2}$ $\Rightarrow DE = r\sin\beta - r\cos\beta\tan\alpha \text{ Now in } \Delta \text{ADC, AE is the median}$ $\therefore 2 (AE^{2} + DE^{2}) = AD^{2} + AC^{2}$ $\Rightarrow 2 [d^{2} + r^{2} (\sin\beta - \cos\beta\tan\alpha)^{2}]$ $= 4r^{2} \cos^{2} b \sec^{2} a + 4r^{2}$ $\Rightarrow r^{2} = \frac{d^{2}\cos^{2}\alpha}{\cos^{2}\alpha + \cos^{2}\beta + 2\cos\alpha\cos\beta\cos(\beta - \alpha)}$ $\Rightarrow \text{ Area of circle,}$

$$\pi r^2 = \frac{\pi d^2 \cos^2 \alpha}{\cos^2 \alpha + \cos^2 \beta + 2 \cos \alpha \cos \beta \cos (\beta - \alpha)}$$

Q.17. Let C be any circle with centre $(0, \sqrt{2})$. Prove that at the most two rational points can be there on C. (A rational point is a point both of whose coordinates are rational numbers.) (1997 - 5 Marks)

Sol. Given C is the circle with centre at (0, 2) and radius r (say) then $C = x^2 + (y - \sqrt{2})^2 = r^2$

$$\Rightarrow (y - \sqrt{2})^2 = (r^2 - x^2) \Rightarrow y - \sqrt{2} = \pm \sqrt{r^2 - x^2}$$
$$\Rightarrow y = \sqrt{2} \pm \sqrt{r^2 - x^2} \dots (1)$$

The only rational value which y can have is 0.

Suppose the possible value of x for which y is 0 is x_1 . Certainly – x_1 will also give the value of y as 0 (from (1)).

Thus, at the most, there are two rational pts which satisfy the eqⁿ of C.

Q.18. C₁ and C₂ are two concentric circles, the radius of C₂ being twice that of C1. From a point P on C₂, tangents PA and PB are drawn to C₁. Prove that the centroid of the triangle PAB lies on C₁. (1998 - 8 Marks)

Ans.

Sol. Let P(h, k) be on C_2

$$\therefore h^2 + k^2 = 4r^2$$

Chord of contact of P w.r.t. C_1 is $hx + ky = r^2$

It intersects C_1 , $x^2 + y^2 = a^2$ in A and B.

Eliminating y, we get,

$$x^{2} + \left(\frac{r^{2} - hx}{k}\right)^{2} = r^{2}$$

or, $x^{2} (h^{2} + k^{2}) - 2r^{2} hx + r^{4} - r^{2} k^{2} = 0$
or, $x^{2} \cdot 4r^{2} - 2r^{2} hx + r^{2} (r^{2} - k^{2}) = 0$
 $\therefore \quad x_{1} + x_{2} = \frac{2r^{2}h}{4r^{2}} = \frac{h}{2}, y_{1} + y_{2} = \frac{k}{2}$

If (x, y) be the centroid of ΔPAB , then

$$3x = x_1 + x_2 + h = \frac{h}{2} + h = \frac{3h}{2}$$

$$\therefore \quad x = \frac{h}{2} \text{ or } h = 2x \text{ and similarly } k = 2y$$

Putting in (1) we get $4x^2 + 4y^2 = 4r^2$

 \therefore Locus is $x^2 + y^2 = r^2$ i.e., C_1

Q.19. Let T_1 , T_2 be two tangents drawn from (-2, 0) onto the circle $C : x^2 + y^2 = 1$. Determine the circles touching C and having T_1 , T_2 as their pair of tangents. Further, find the equations of all possible common tangents to these circles, when taken two at a time. (1999 - 10 Marks)

Sol. The given circle is $x^2 + y^2 = 1 \dots (1)$

Centre O (0, 0) radius = 1

Let T_1 and T_2 be the tangents drawn from (-2, 0) to the circle (1).

Let m be the slope of tangent then equations of tangents are

$$y - 0 = m (x + 2) \text{ or, } mx - y + 2m = 0 \dots (2)$$

As it is tangent to circle (1)

length of \perp lar from (0, 0) to (2) = radius of (1)

$$\Rightarrow \left| \frac{2m}{\sqrt{m^2 + 1}} \right| = 1 \Rightarrow 4m^2 = m^2 + 1 \Rightarrow m = \pm 1/\sqrt{3}$$

:. The two tangents are $x + \sqrt{3}y + 2 = 0(T_1)$ and

$$x - \sqrt{3}y + 2 = 0(T_2)$$

Now any other circle touching (1)

and T_1 , T_2 is such that its centre lies on x-axis.

Let (h, 0) be the centre of such circle, then from fig.

 $OC_1 = OA + AC_1 \Rightarrow \mid h \mid = 1 + \mid AC_1 \mid$

But $AC_1 = \bot$ lar distance of (h, 0) to tangent

$$\Rightarrow |h| = 1 + \left|\frac{h+2}{2}\right| \Rightarrow |h| - 1 = \left|\frac{h+2}{2}\right|$$

Squaring,

$$h^{2}-2|h|+1 = \frac{h^{2}+4h+4}{4}$$

$$\Rightarrow 4h^{2} \pm 8h + 4 = h^{2} + 4h + 4$$

$$`+` \Rightarrow 3h^{2} = -4h \Rightarrow h = -4/3$$

$$`-` \Rightarrow 3h^{2} = 12h \Rightarrow h = 4$$

Thus centres of circles are $(4, 0), \left(-\frac{4}{3}, 0\right)$

: Radius of circle with centre (4, 0) is = 4 - 1 = 3 and radius of circle with centre $\left(\frac{-4}{3}, 0\right)$ is = $\frac{4}{3} - 1 = \frac{1}{3}$

: The two possible circles are $(x - 4)^2 + y^2 = 3^2 \dots (3)$

$$\left(x+\frac{4}{3}\right)+y^2=\left(\frac{1}{3}\right)^2\ ...\ (4)$$

Now, common tangents of (1) and (3). Since (1) and (3) are two touching circles they have three common tangents

 T_1 , T_2 and x = 1 (clear from fig.)

Similarly common tangents of (1) and (4) are T_1 , T_2 and x = -1.

For the circles (3) and (4) there will be four common tangents of which two are direct common tangents .

XY and x' y' and two are indirect common tangents. Let us find two common indirect tangents. We know that In two similar Δ 's C₁XN and C₂YN

$$\frac{3}{1/3} = \frac{C_1 N}{C_2 N} \Rightarrow N \text{ divides } C_1 C_2 \text{ in the ratio } 9 : 1.$$

Clearly N lies on x-axis.

:
$$N = \left(\frac{9 \times (-4/3) + 1 \times 4}{10}, 0\right) = \left(\frac{-4}{5}, 0\right)$$

Any line through N is

$$y = m\left(x + \frac{4}{5}\right) \text{ or } 5mx - 5y + 4m = 0$$

If it is tangent to (3) then

$$\left|\frac{20m+4m}{\sqrt{25m^2+25}}\right| = 3$$
$$\Rightarrow 24m = 15\sqrt{m^2+1} \quad \Rightarrow \ 64m^2 = 25m^2 + 25$$

$$\Rightarrow 39 \text{m}^2 = 25 \Rightarrow m = \pm 5/\sqrt{39}$$

∴ Required tangents are

$$y = \pm \frac{5}{\sqrt{39}} \left(x + \frac{4}{5} \right).$$

Q.20. Let $2x^2 + y^2 - 3xy = 0$ be the equation of a pair of tangents drawn from the origin O to a circle of radius 3 with centre in the first quadrant. If A is one of the points of contact, find the length of OA. (2001 - 5 Marks)

Ans. Sol. The equation $2x^2 - 3xy + y^2 = 0$ represents pair of tangents OA and OA'. Let angle between these to tangents be 2θ .

As θ is acute $\tan \theta = \sqrt{10} - 3$

Now we know that line joining the pt through which tangents are drawn to the centre bisects the angle between the tangents,

$$\therefore \angle AOC = \angle A'OAC = \theta$$

In ΔAOC,

$$\tan \theta = \frac{3}{OA} \implies OA = \frac{3}{\sqrt{10} - 3} \times \frac{\sqrt{10} + 3}{\sqrt{10} + 3}$$

$$\therefore \quad OA = 3 (3 + \sqrt{10}).$$

Q.21. Let C_1 and C_2 be two circles with C_2 lying inside C_1 . A circle C lying inside C_1 touches C_1 internally and C_2 externally.

Identify the locus of the centre of C. (2001 - 5 Marks)

Ans. Sol. Let equation of C_1 be $x^2 + y^2 = r_1^2$ and of C_2 be $(x - a)^2 + (y - b)^2 = r_2^2$

Let centre of C be (h, k) and radius be r, then by the given conditions.

$$\sqrt{(h-a)^2 + (k-b)^2} = r + r_2 \text{ and } \sqrt{h^2 + k^2} = r_1 - r_2$$

 $\Rightarrow \sqrt{(h-a)^2 + (k-b)^2} + \sqrt{h^2 + k^2} = r_1 + r_2$

Required locus is

$$\sqrt{(x-a)^2 + (y-b)^2} + \sqrt{x^2 + y^2} = r_1 + r_2,$$

which represents an ellipse whose foci are at (a, b) and (0, 0).

 $[:: PS + PS' = constant \Rightarrow locus of P is an ellipse with foci at S and S']$

Q.22. For the circle $x^2 + y^2 = r^2$, find the value of r for which the area enclosed by the tangents drawn from the point P (6, 8) to the circle and the chord of contact is maximum. (2003 - 2 Marks)

Ans.

Sol. The given circle is $x^2 + y^2 = r^2$

From pt. (6, 8) tangents are drawn to this circle.

Then length of tangent

$$PL = \sqrt{6^2 + 8^2 - r^2} = \sqrt{100 - r^2}$$

Also equation of chord of contact LM is

$$6x + 8y - r^2 = 0$$

PN = length of \perp lar from P to LM

$$=\frac{36+64-r^2}{\sqrt{36+64}}=\frac{100-r^2}{10}$$

Now in rt. Δ PLN, LN² = PL² - PN²

$$-\frac{(100-r^2)^2}{100} = \frac{(100-r^2)r^2}{100} \implies LN = \frac{r\sqrt{100-r^2}}{10}$$
$$\therefore LM = \frac{r\sqrt{100-r^2}}{5} (\because LM = 2 LN)$$
$$\therefore \text{ Area of } \Delta PLM = \frac{1}{2} \times L M \times PN$$
$$= \frac{1}{2} \times \frac{r\sqrt{100-r^2}}{5} \times \frac{100-r^2}{10} = \frac{1}{100} [r(100-r^2)^{\frac{3}{2}}]$$

For max value of area, we should have

$$\frac{dA}{dr} = 0$$

$$\Rightarrow \frac{1}{100} \left[(100 - r^2)^{\frac{3}{2}} + r \cdot \frac{3}{2} (100 - r^2)^{\frac{1}{2}} (-2r) \right] = 0$$

$$\Rightarrow (100-r^2)^{\frac{1}{2}}[100-r^2-3r^2]=0$$

$$\Rightarrow r = 10 \text{ or } r = 5$$

But r = 10 gives length of tangent PL = 0

$$\therefore r \neq 10. \text{ Hence, } r = 5$$

Q.23. Find the equation of circle touching the line 2x + 3y + 1 = 0 at (1, -1) and cutting orthogonally the circle having line segment joining (0, 3) and (-2, -1) as diameter. (2004 - 4 Marks)

Ans. Sol. We are given that line 2x + 3y + 1 = 0 touches a circle S = 0 at (1, -1).

So, eqⁿ of this circle can be given by $(x - 1)^2 + (y + 1)^2 + \lambda(2x + 3y + 1) = 0$.

[Note : $(x - 1)^2 + (y + 1)^2 = 0$ represents a pt. circle with centre at (1, -1)].

or $x^2 + y^2 + 2x (\lambda - 1) + y (3\lambda + 2) + (\lambda + 2) = 0 ...(1)$

But given that this circle is orthogonal to the circle, the extremities of whose diameter are (0, 3) and (-2, -1)

i.e.
$$x (x + 2) + (y - 3) (y + 1) = 0$$

$$x^{2} + y^{2} + 2x - 2y - 3 = 0$$
(2)

Applying the condition of orthogonality for (1) and (2), we

get
$$2(\lambda - 1) \cdot 1 + 2\left(\frac{3\lambda + 2}{2}\right) \cdot (-1) = \lambda + 2 + (-3)$$

$$[2g_1g_2 + 2f_1f_2 = c_1 + c_2]$$

$$\Rightarrow 2\lambda - 2 - 3\lambda - 2 = \lambda - 1$$
$$\Rightarrow 2\lambda = -3 \Rightarrow \lambda = \frac{-3}{2}$$

Substituting this value of λ in eqⁿ (1) we get the required circle as

$$x^{2} + y^{2} - 5x - \frac{5}{2}y + \frac{1}{2} = 0$$

or, $2x^{2} + 2y^{2} - 10x - 5y + 1 = 0$

Q.24. Circles with radii 3, 4 and 5 touch each other externally. If P is the point of intersection of tangents to these circles at their points of contact, find the distance of P from the points of contact. (2005 - 2 Marks)

Ans. Sol. Given these circles with centres at C_1 , C_2 and C_3 and with radii 3, 4 and 5 respectively, The three circles touch each other externally as shown in the figure.

P is the point of intersection of the three tangents drawn at the pts of contacts, L, M and N. Since lengths of tangents to a circle from a point are equal, we get

PL = PM = PN

Also $PL \perp C_1C_2$, $PM \perp C_2C_3$, $PN \perp C_1C_3$

(Q tangent is perpendicular to the radius at pt. of contact)

Clearly P is the incentre of $\Delta C_1 C_2 C_3$ and its distance from pt.of contact i.e.,

PL is the radius of incircle of $\Delta C_1 C_2 C_3$.

In $\Delta C_1 C_2 C_3$ sides are a = 3 + 4 = 7, b = 4 + 5 = 9, c = 5 + 3 = 8

 $PL \perp C_1C_2, PM \perp C_2C_3, PN \perp C_1C_3$

$$\therefore \quad s = \frac{a+b+c}{2} = 12$$

$$\therefore \quad \Delta = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{12 \times 5 \times 3 \times 4} = 12\sqrt{5}$$

$$\therefore \quad r = \frac{\Delta}{s} = \frac{12\sqrt{5}}{12} = \sqrt{5}$$

Integar Type ques of Circle

Q.1. The centres of two circles C_1 and C_2 each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segement joining the centres of C_1 and C_2 and C be a circle touching circles C_1 and C_2 externally. If a common tangent to C_1 and C passing through P is also a common tangent to C_2 and C, then the radius of the circle C is (2009)

Ans. (8)

Sol. Let r be the radius of required circle.

Clearly, in $\Delta C_1 C C_2$, $C_1 C = C_2 C = r+1$

and P is mid point of C_1C_2

 $\therefore CP \perp C_1C_2$

Also PM \perp CC₁

Now $\triangle PMC_1 \sim \triangle CPC_1$ (by AA similarity)

Q.2. The straight line 2x - 3y = 1 divides the circular region $x^2 + y^2 \le 6$ into two parts.

If $S = \left\{ \left(2, \frac{3}{4}\right), \left(\frac{5}{2}, \frac{3}{4}\right), \left(\frac{1}{4}, -\frac{1}{4}\right), \left(\frac{1}{8}, \frac{1}{4}\right) \right\}$ then the number of points (s) in S lying inside the smaller part is (2011)

Sol.

The smaller region of circle is the region given by $x^2 + y^2 < 6 ...(1)$

and $2x - 3y > 1 \dots (2)$

We observe that only two points $\left(2,\frac{3}{4}\right)$ and $\left(\frac{1}{4},-\frac{1}{4}\right)$

satisfy both the inequations (1) and (2)

 \therefore 2 points in S lie inside the smaller part.

